Sports and safety technology is a rapidly-developing field that has needed an answer to the glaring halt that helmet infrastructure has come to. While sports have become cornerstones of the world’s pastime, the safety gear surrounding them have needed updating. This is especially apparent in helmets that players wear season after season.

Windpact embarked on a quest to understand the gaps in solutions for protective equipment, and how the science behind impacts should shape our gear. Using the latest in biotech, engineering, and sports science solutions, Windpact wants to show you how the evolution of sports helmet technology can be maximized using knowledge and industry data.

That is why we need to talk about helmets, one of the most important pieces of protective gear used in a variety of sports. Specifically, furthering the evolution of sports helmet technology is a problem that needs a solution, now.

The evolution of helmet technology has been the center of attention as experts debate on how to improve existing technology to keep players safe.

Despite routine safety evaluations for helmets on the market by a variety of professional leagues, Windpact has noticed a lack of innovation in the underlying principles that allow sports helmets to function at optimal performance. Despite strong advocates like the National Football League (NFL) pushing for more research into safety, there are issues with the current framework that many sports helmets are based upon.

As our CEO Shawn Springs found, padding solutions in helmets had not changed much over the years; in fact, that’s one of the major reasons Windpact was developed. As the son of NFL running back Ron Springs, he noticed that the helmet his father wore during his time with the Dallas Cowboys in the 1980s was nearly identical to his helmet he himself wore with the Patriots in 2009—that is 30 years of the same technology!

side by side photo of Ron Springs' helmet and Shawn Springs' helmet.

Think about it; with the growing reports of sports injuries becoming more common, the technology that protects one of the most important organs in our bodies (the brain) has not fully adapted given the data.

Today, we want to look at three major concepts surrounding the evolution of sports helmet technology:

  • Why helmets are needed in modern sports
  • How far the technology behind them has come
  • The related issues of safety due to outdated technology

In a world full of constant innovation and invention, safety technology needs to catch up. At Windpact, we’re here to show you why and how our solutions can fill these holes in the evolution of helmet technology.

In a world full of constant innovation and invention, safety technology needs to catch up. At Windpact, we’re here to show you why and how our solutions can fill these holes in the evolution of helmet technology.

Sports have always needed helmets

Helmets have not always looked like the modern, encased units we are used to in today’s world. They were actually fairly simple, but the reason they were worn has remained the same throughout history. Today, nearly every professional sport requires players to wear helmets, with the express purpose of mitigating concussions and brain injuries. 

As early as the 8th century BCE, soldiers adorned their heads with bronze helms to take into battle with them, according to historians at StrongBlade.com. These helmets, called Corinthian helmets, were standard for soldiers; even back then, people understood that the head was an important body part to keep protected.

However, since athletes today do not have to wear helmets to protect from spears and swords, today we want to talk about the more practical units players wear during games. While the earliest of early origins of the helmet are fascinating, the kind of technology we use today is a bit more layered.

Football helmets are some of the most recognizable pieces of sports equipment, so much so that it’s almost absurd to think they’re a relatively recent addition to the game. As early as the 1800s, the dangers of playing football without a helmet were well-understood; reports of collegiate athletes sustaining extreme head injuries following a season brought about changes to the game meant to protect players.

The same article even notes that players began growing their hair very long because they believed the extra protection from their hair would reduce the number of injuries to their heads. It seems that these players were just on the horizon of finding a suitable—albeit low tech—solution to their problem.This trend came on the heels of the first football helmet.

Who was responsible for the very first football helmet is hard to verify, but there are reports that the earliest type of outer head protection geared for the sport was commissioned by Lafayette player George Barclay. George asked a harnessmaker to create a head strap with earmuffs made of padded leather; this is one of the earliest accounts of a football player wearing a type of head protection. 

The more complex helmets that surrounded the head would appear soon after. They allegedly have their origins in the Army and Navy; during the early football games they played against each other in the late 1800s. Admiral Joseph Mason Reeve is often credited with inventing the fully fleshed-out football helmet.

After his physician cautioned him that he risked death or “insanity” following more impacts to the head, he decided to take action. He asked his shoemaker to instead fasten leather headgear with ear flaps out of moleskin; thus, a primitive “football helmet” was born.

There was just no foam, exterior, or layered protection at all. It was more of a helmet in the sense that it went on your head and you used it when you thought your head was in danger of impact. That did not stop the Admiral though, and he took his new contraption on the field to share with his colleagues. His helmet was accepted fairly readily, such that there are even reports that paratroopers adopted his design during the first World War. 

It’s a simple story, but one that would go relatively ignored until about 1939, when helmets, as we know them, were required to be used in competitive play. This coincided with the invention of a helmet using a plastic exterior, metal, and padding that characterizes a basic helmet design, familiar to us in the 21st century. John Riddell patented the first plastic shell helmet in 1939, and his design has formed the basis for current helmet manufacturers even today.

It seems that even back then, concerns about safety prompted using innovative solutions.

Shawn Springs' Helmet From The New England Patriots In 2009

Sports Helmets Testing Today

As the use of helmets became commonplace, concerned athletes and researchers took it upon themselves to establish a regulatory system for checking the quality of helmets and gear year after year at the university and academic level. The development of this system follows this timeline:

It is important to mention that testing and approval by NOCSAE is not mandatory, however, multiple institutions require their players to use helmets with NOCSAE’s sticker (and therefore, its certification), and thus, it is very uncommon to see unverified helmets used in college sports.

The NFL established its own routine testing protocol, whereby they annually test helmets on the market using certified laboratory facilities to help inform players, coaches, and medical teams. The tests are conducted by an independent testing facility, BioKinetics, and are designed and reviewed by an elite team of experts from the University of Virginia, Duke University, and the University of Pennsylvania.

The tests are conducted using impact severity as an outcome; the ranking is determined by how well the unit mediated impact in the lab against a dummy. The results are published in a poster in each locker room that breaks down the top-performing helmets available versus the lower-performing ones. Helmets that are found to be especially unsatisfactory are placed on a “prohibited” list, banning players from using them in games.

Notably, this most recent poster publication specifies that players will no longer be allowed to “grandfather” wearing helmets previously prohibited in 2018. The results of this removal of the grandfather rule has made waves in the news lately. Antonio Brown, who was recently released by the New England Patriots, was not allowed to use the same helmet he has kept for the entirety of his nine year career due to this new specification.

Tom Brady switched to a newer model for the same reason, as his previous helmet made it on the 2019 “prohibited” list. This is a testament to how seriously the NFL champions safety for its players, and their mission of using research to keep athletes equipped with effective gear sets a powerful example.

This is one of the major components of keeping sports athletes safe; empowering them and their teams with information. It is part of why Windpact is constantly updating our proprietary materials database — as knowledge of injury and safety progresses, it is up to the solutions to adapt. Although no helmet can guarantee protection from a severe injury, the idea of improving standards through constant testing is a noble one.

So how far has sport helmet technology come?

Helmets have a wide range of applications, and they’re a staple piece of equipment for most athletic sports.

The most sports that require a helmet:

  • Football helmets
  • Cycling helmets
  • Motorcycle helmets
  • Hockey helmets

A football helmet has three (sometimes four or even five) major parts that comprise it. These parts have evolved throughout the history of the game, but not by much.

  • The outer shell: usually made of polycarbonate, which is a lightweight but durable material that can withstand a variety of temperatures. The outer shell used to be made of soft leather, as demonstrated by Barclay’s and Reeve’s early designs. Replaced with plastic by John Riddell in 1939.
  • Energy-absorbing padding: usually nitrile or polyurethane foams, which line the inside of the shell to absorb impact.
  • Face mask: usually multibar masks. These face masks are used to provide protection for the face. They are typically made of titanium, steel or carbon steel, and coated in a plastic polymer.

A cycling helmet is made up of two basic parts, and they must strike a balance between being lightweight and aerodynamic — to account for the velocity of the cyclist — and protection against falls.

  • A lightweight hard shell: usual models are made of polycarbonate shells, similar to football helmets, but they have a noticeable taper and do not cover the entire head (ears and all).
  • A soft lining: usually polystyrene foam, very different texture to softer foams. The linings can be made of anything, but polystyrene is the standard.
cyclist wearing a helmet looking into sunset

Motorcycle helmets handle extremely fast speeds in traffic; they come in different varieties, but the most common is the full face helmet:

  • Outer shell: similar to football helmets, typically made of polycarbonate or carbon fiber; notably, they extend around the full head and protect the chin, something unique to motorcycle helmets in particular.
  • Inner lining: usually polystyrene, but some premium models offer more reinforcement through foam or cloth combinations.
  • Visor: usually tinted visors that cover the eyes and protect from the wind.

Hockey helmets are a good place to highlight the combination of football and motorcycle helmets, since they share a lot of the same machinery:

  • Outer shell: this is typically made of vinyl nitrile, which can be formed into a robust plastic shell that offers protection similar to polycarbonate.
  • Energy-absorbing lining: the standard models are lined with vinyl nitrile foam.
  • Face shield: similar to the visors of motorcycle helmets, the primary purpose of these visors is to keep the face safe from incoming pucks.

kids-playing-hockey

Catcher’s helmets and Masks are ideal places to highlight the combination of everything we’ve talked about this far since they share a lot of the same machinery:

  • Outer shell: Was once a made of fiber but in the 1960s, catcher’s helmets replaced fiber with plastics (polycarbonate) for the outer shell.
  • Energy-absorbing lining: both catcher’s masks and helmets are lined with padding similar to football
  • Face shield: similar to the hocker the purpose of the face shield is to stop baseballs instead of pucks. They are so similar that catcher’s helmets are often to referred to as “goalie style” helmet.

First and foremost, how do you even test sports helmet technology, to begin with? The tests are often cited in the news, but the methodology underlying them is not readily available.

It is important to note that helmet testing is a translational science, meaning that the tests are carried out on dummies and the lab data is meant to be used (or, translated) into better recommendations that benefit humans. When it is not realistic or safe to recruit human volunteers in research, translational science has come to the rescue, and the research principles that guide it have been used to help improve diagnostics, medicine, and science time and time again.

Helmets are tested using a variety of different laboratory configurations, but the process tends to be the same. Obviously, it is important to standardize the testing—standards and replicability (i.e. being able to copy what a researcher did in order to verify the underlying methods) are part of the scientific method.

Each sports professional body has its own system for overseeing the regulation of helmet standards for their athletes. Bicycle helmets must meet the US Consumer Product Safety Commission’s standards through rigorous testing in order to be sold, and the National Hockey League (NHL) requires all players signed to wear a helmet.

There are even cases where professional leagues contract third-party laboratories to conduct testing.

The NFL, for example, contracts an independent helmet testing facility, BIOKINETICS, to run a variety of tests (listed here):

  • Helmets are tested on a mono-rail “drop tower” that simulates a strike from a variety of configurations.
  • A “pneumatic ram” which is basically a small battering ram that strikes the helmet at different locations, including one at random.
  • A sliding carriage with a dummy head on a pivot that is subjected to different linear ram forces. This is the test most commonly used by NOCSAE and the NFL subcommittee review, and the full protocol is available here.

This type of testing is crucial to evaluate the baseline durability of a helmet to survive impacts. The gaps in translatability can be solved by the solutions in Windpact’s proprietary software; Windpact maintains and constantly updates its Platform as a Service (PaaS) software to account for available and validated science.

PaaS, to Windpact, means that clients can work with our material data, industry expertise and simulation modeling to test their helmet or foam configurations before it even reaches physical field testing — our service is to put these tools in your hands and generate the data you need to optimize your platform. This translates into time saved, assets saved, and more precise product design.

By constantly adapting, the next generation of helmet testing can stand the test of time.

Safety is one of the biggest problems facing sports technologies today

Helmet technology needs consistent updating because the forces acting on players can be devastating. Concussions are a good example of this: approximately 1.7-3 million concussions occur each year, even in individuals wearing helmets, according to the UPMC Sports Medicine Concussion Program.

College football players, in particular, receive upwards of 1400 head impacts per season, distributed on average as 6.3 impacts per practice, and 14.3 per game, according to a recent study completed by researchers at Brown University. In the NHL, there was an average of 63.8 concussions per season between the years 2005 – 2012.

Concerns about safety were the primary catalysts for the widespread use of helmets to begin with; think about the early football games in the late 1800s, where helmets were made of moleskin, for example. Furthermore, it’s clear that college football leagues and the NFL have noticed how debilitating injuries can be to their players, as well as how common they are.

The National Collegiate Athletic Association (NCAA) reports that concussions make up about 7.4 percent of all injuries sustained by college football players. While the same report acknowledges that lower limb injuries make up a greater proportion of injuries overall, it seems odd that one of the most “protected” areas of the body during the game falls victim to consistent injury as they found.

The American Association of Neurological Surgeons estimated in 2009, that the highest number of head injuries occurred in the following groups:

  • Cycling came in first at 85,389 injuries
  • Football second at 46,848 injuries
  • Baseball and softball third at 38,394

Naturally, it is key to look at data like this if we hope to understand how to change the trend of head injuries across different sports. Cycling, football, baseball, and hockey all have their own unique risks, and these risks require a solution that adapts to the sport and prepares players for any kind of impact. Consistent testing and looking at trends is the science behind innovation, and that is a principle both Windpact and the NFL understand. Just last week, the NFL released its most recent injury data ranging from 2012 to 2019, owing to their commitment towards updating their safety standards with reliable data.

Speaking of injuries, the type of damage that can happen to players matters when we talk about helmet safety…

What kind of injuries happen in modern sports?

If we are going to talk about solutions to impact reduction, we need to understand how an impact injury occurs, according to science. There is some physics to be explained here, and they’re necessary to grasp what separates a minor impact from a major impact.

A great example to visualize and understand this impact is with a moving car. When a car moves us forward, it’s actually the force of the vehicle acting on our bodies, moving us in the direction of the car. Our bodies travel at the same velocity as the car due to the same forces pushing us, meaning that if we crash, our bodies will still be traveling forward independent of the car. It’s why you see people sustain injuries from the steering wheel; their bodies were still traveling even though the car has stopped. It’s also why you can be ejected from a vehicle.

The forces that drive objects forward do not simply disappear upon a sudden stop, they are conserved and distributed. This is the essence of the law of conservation of energy. The law of conservation of energy states that energy cannot be created or destroyed, but can be transformed and repurposed. When considering head impacts, the energy that is transferred from an impact does not disappear, it is distributed throughout your helmet. When you are brought to a sudden stop, the cumulative forces that were acting on you during motion are now transferred to your body in a very short span of time; this is called a deceleration injury.

This rapid deceleration is part of the reason head trauma happens in vehicle accidents, for example.

If you consider the head of a running back as an object accelerating towards a fixed path across the field, and, suddenly, that running back is tackled, you’ve essentially brought his velocity to a halt while the force acting on him is conserved through the movement. The forces that propel him forward, as well as those that stop him, are now distributed across his head within a rapid span of time and short distance. Researchers viewing video recordings of this phenomenon have calculated that, oftentimes,